Martha Polovich, PhD, RN, AOCN Georgia State University

HAZARDOUS DRUG SAFE HANDLING: WHERE ARE WE?

Objectives

- Describe the evidence for adverse outcomes from occupational hazardous drug (HD) exposure
- State current recommendations for minimizing hazardous drug exposure
- Discuss the need for future research related to occupational hazardous drug exposure

Defining Terms:

- High Risk/ High Alert drugs (patients)
 - Drugs requiring special attention due to higher risk of side effects
 - Drugs with narrow range of therapeutic efficacy
 - Drugs that are more difficult to administer
- Hazardous drugs (workers)
 - Drugs requiring careful handling to prevent occupational exposure

Criteria for Hazardous Drugs

- Carcinogens
- Genotoxins
- Teratogens
- Reproductive toxins
- Organ toxicity at low doses
- Structure or toxicity similar to drugs classified as hazardous

(ASHP, 2006; NIOSH, 2004)

Known Human Carcinogens (IARC Group 1)

- Arsenic trioxide
- Azothiaprine
- Busulfan
- Chlorambucil
- Cyclophosphamide
- Etoposide
- Melphalan

- Semustine
- Tamoxifen
- Thiotepa
- Treosulfan
- MOPP*
- ECB*

International Agency for Research on Cancer (IARC) http://www.iarc.fr/

IARC Groups 2A / 2B

Probable Carcinogens

- Azacitidine
- Carmustine
- Cisplatin
- Doxorubicin
- Lomustine
- Nitrogen mustard
- Procarbazine
- Teniposide

Possible Carcinogens

- Amsacrine
- Bleomycin
- Dacarbazine
- Daunorubicin
- Mitomycin
- Mitoxantrone
- Streptozocin

http://www.iarc.fr/

Evidence for Adverse Outcomes: Occupational Hazardous Drug Exposure

Concept of Risk

- What is the association between exposure & development of disease?
- If an association exists, how strong is it?

Measuring Risk

Relative risk = incidence in exposed incidence in non-exposed

RR = 1 No difference

RR > 1 Risk in exposed is greater

<u>Odds Ratio</u>: = <u>Odds that a case was exposed</u> Odds that a control was exposed

OR = 1 No difference

OR > 1 Exposure is positively related to disease

Gordis, 2004

Genotoxic Adverse Outcomes

- Genotoxicity in exposed nurses
 - 50% increase in DNA single strand breaks
 - Significantly greater DNA tail length (Comet Assay)
- Chromosomal abnormalities in exposed nurses
 - Significant increase in structural chromosome abnormalities

Yoshida et al, 2006; Testa et al, 2007

Chromosome Abnormalities: Alkylating Agent Handling

Location of Chromosome Abnormality	100 Event IRR*	200 Event IRR*	<i>p</i> value
Chromosome 5	2.92	8.54	0.01
Chromosome 7	2.31	5.33	0.11
Chromosome 5 or 7	2.62	6.86	0.001
Chromosome 11	1.17	1.37	0.79

*IRR= Incidence Rate Ratio: Association between chromosome abnormality rates at select drug handling frequencies compared to zero drug handling events (controls).

McDiarmid, 2010

Cancer Occurrence

- Increased occurrence of cancer in pharmacy technicians (RR = 1.1-3.6)
- Increase in acute leukemia in exposed nurses (RR = 10.65)
- Overall increased occurrence of cancer in exposed nurses (OR = 3.27, p = .03)

RR = Relative Risk; OR = Odds Ratio

Hansen & Olsen, 1994; Martin, 2003; Skov et al, 1992)

Adverse Reproductive Outcomes

- Infertility (OR = 1.42-1.5)
- Spontaneous abortion/ miscarriage
 - 2-3.5 fold increased risk
- Premature labor (OR = 2.98)
- Pre-term birth (OR = 5.56)
- Learning disabilities in offspring (OR = 2.56)

(Fransman, 2007; Hansen & Olsen, 1994; Lawson, 2012; Martin, 2005; Skov, 1992)

Nurses Experience of Adverse Health Effects

- "In retrospect, it was very obvious to me. The exposure was there and I had this problem. The exposure was gone and I didn't have it and never have had it again." (speaking about her chronic nasal sores.)
- "The next day I would get up with blood in my urine and bladder spasms, and it was only the day after I mixed; and since I've quit mixing like that, I don't have them now." (Referring to cyclophosphamide.)

Polovich, 2009

Evidence for Occupational Hazardous Drug Exposure

Patients vs. Health Care Workers Exposure

- Patients
 - Therapeutic dosesLow-doses
 - Few drugs
 - Over months
- Health care workers

 - MANY drugs
 - Over several years

Potential Routes of Exposure

- Dermal absorption:
 - Direct drug contact
 - Contact with contaminated surfaces
- Injection:
 - Sharps
 - Breakage

- Ingestion via contaminated:
 - Food, gum
 - Hand-to-mouth transfer
- Inhalation:
 - Aerosols
 - Vapors

ASHP, 2006; NIOSH, 2004; Polovich, et. al. (ONS), 2009; Polovich, 2011

Summary of Published Evidence

- Contamination on external vial surfaces (>15 studies since 1992)
- Excretion of drugs and drug metabolites in urine of health care workers (>25 studies since 1992)
- Workplace surface contamination (>60 studies since 1994)

Surface Contamination: Two U.S. Studies

1999

- 6 hospitals
- 3 drugs
- Pharmacy: 75% wipe samples > LOD
- Nursing: 65% wipe samples > LOD

2010

- 3 hospitals
- 5 drugs
- Pharmacy: 75% wipe samples > LOD
- Nursing: 43% wipe samples > LOD

LOD = Limit of Detection

Connor et al, 1999; Connor et al, 2010.

Oncology Nurses: Exposure

- Reported during routine handling:
 - 11-17% Dermal or eye exposure (previous year)
 - 4-11% Skin contact (previous week)
 - 12-24% Taking home contaminated clothes
 - 1.4% Sharps injury involving chemotherapy
 - (previous year)
- Spills:
 - 12% reported spills (previous week)
 - Multiple staff usually involved in spill clean-up
 - Staff reporting spills had HDs in urine
 - Staff who DID NOT report spills had HDs in urine

Boiano, 2014; Boiano, in press; Friese, 2012; 2014

Implications for Practice

- Routine medication handling results in hazardous drug exposure
- Knowing what drugs are hazardous is essential
- Safe handling precautions reduce exposure
- Any worker who fails to follow precautions puts themselves and others at risk

Controlling Hazardous Drug Exposure

Hierarchy of Controls

Most Effective

- Eliminate the hazard
- Engineering controls
- Administrative controls
- Work practice controls
- Personal protective equipment

Least Effective

U.S. Dept. of Labor, 1998

Engineering Controls: Highest Level Protection

- Machines or equipment
 - Biologic Safety Cabinet (BSC) or
 - Compounding Aseptic Containment Isolator (CACI)
 - Closed system transfer device (CSTD)
- Advantages:
 - Contain the hazard
 - Independent of the worker

ASHP, 2006; NIOSH, 2004; ONS,. 2011

Definitions:

- Closed System
 - Device used to transfer a sterile drug from one container to another
 - Goals: <u>maintain sterility of the product</u>
- Closed System Transfer Device
 - Device that mechanically prohibits the transfer of environmental contaminants into the system and the escape of liquid or vapor out of the system
 - Goal: maintain sterility AND prevent escape of drug

NIOSH, 2004

Administrative Controls

- Written policies & procedures
- Hazardous Drug List
- Education & competency
- Medical Surveillance
- Alternative duty around pregnancy

Organizational Policies

Content	% Sites
Required qualifications for HD handling	100%
Required PPE for chemotherapy handling*	100%
Chemotherapy disposal	100%
Transporting chemotherapy	100%
Chemotherapy spill management	100%
Acute exposure management	80%
Health monitoring of personnel	45%

Education, Training & Monitoring

*25% of organizations did not require gowns for HD handling.

Education

Polovich & Clark, 2012

- Classroom instruction (90%)
- Training
 - Supervised practice with preceptor (100%)
 - Skill checklist (60%)
- Monitoring
 - Formal mechanism (25%)
 - Informal "spot checks" (50%)
 - None (25%)

Polovich & Clark, 2012

Work Practice Controls

- Label HDs as hazardous
- Transport HDs in sealed bags
- Inspect HD containers for leaks
- Wash hands after removing PPE
- Avoid touching unnecessary items with contaminated gloves
- Avoid wearing PPE outside drug handling areas
- Avoid spiking & priming (without a closed system)
- Discard used IV equipment intact

Personal Protective Equipment (PPE)

- Gloves:
 - two pair, tested with hazardous drugs
 - powder-free
 - latex, nitrile, neoprene
- Gowns:
 - tested with hazardous drugs
 - disposable, single-use
 - cuffs
 - back closure

ASHP, NIOSH, OSHA, ONS

More PPE...

- Eye protection
 - when splashing is possible
- Respirator/mask
 - aerosols & spills

Double Gloves

- To protect against permeation of some drugs
 - Carmustine
 - Thiotepa
- To prevent transfer of contamination from outer gloves to hands and other surfaces
 - ALWAYS consider gloves contaminated after chemotherapy handling (5 studies since 1992)

Use of Hazardous Drug Precautions Nurses reporting use of HD precautions 'Always' or 76-99%

Precaution	Preparation (n = 32)	Administration (n = 164)	Disposal (n = 154)	Handling Excreta (n = 120)
Chemotherapy gloves	90%	78%	74%	55%
Double gloves	12%	19%	18%	18%
Chemotherapy gowns	64%	56%	53%	30%
Eye protection	25%	17%	12%	17%
Respirator	6%	4%	5%	9%
Overall precaution use:				
Mean score (o-5*)	2.7	2.0	1.9	1.6

*5 = Always; 4 = 76-99%; 3 = 51-75%; 2 = 26-50%; 1 = 1-25%; 0 = Never (Polovich & Clark, 2012)

Predictors of HD Precaution Use

Fewer barriers .003

p value

Better workplace safety .006 climate

Fewer patients per day .027

Polovich & Clark, 2012.

Regression Analysis: R^2 = .06 for Step 1, p = .002; ΔR^2 = .23 for Step 2, p < .001

Practice Environment Impact

Odds Ratio

Staffing and resource adequacy

0.35 (0.17-0.73)

Chemotherapy verified by 2 nurses

0.17 (0.05-0.59)

Nurse participation in practice affairs

0.51 (0.24-1.06)

Average workload, last shift

1.06 (0.99-1.12)

* Nurses who reported exposure to chemotherapy in their skin or eye in the past year. Adjusted for individual nurse characteristics (race, certification, education), and clustered observations.

- Staffing adequacy reduced the odds of exposure by 65%
- Chemo verification reduced the odds of exposure by 83%

Friese, et al., 2010

Barriers to HD Precaution Use

- Things that interfere with HD precaution use
- "Unavailability, inconvenience, expense, difficulty, or time consuming nature of a particular action"
- Examples:
 - Practical (lack of / unacceptable protective equipment)
 - Psychosocial (worker / peer attitudes)
 - Environmental (safety climate)
 - Situational (time constraints)

(Pender, et al., 2006, p. 53)

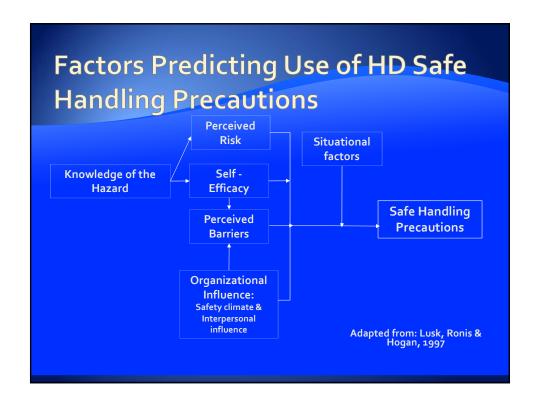
Top Barriers to Using PPE*					
	Agree				
PPE makes me feel too hot	61%				
PPE is uncomfortable to wear	54%				
PPE makes it harder to get the job done	28%				
Others around me don't use PPE	33%				
People would think I am overly cautious	19%				
As barriers increased, use of precautions decreased					
*Polovich & Clark, 2012					

Managers' Stated Reasons for Non-Adherence to HD Precautions

- Gowns not provided
- Too busy or rushed
- Gowns uncomfortable
- Lack of concern
- Urgent patient situation
- Lack of knowledge

- Forgetting
- Poor fitting gloves
- Concern for cost
- Patients' objections
- Precautions "too extreme"

Polovich & Clark, 2012


Future Research

Biological Monitoring for HD Exposure

- HD residue in sweat (treated patients)
- HD exposure following spill clean-up/ acute exposure
- Effective medical surveillance practices

Adverse Health Outcomes of Occupational HD Exposure

- Incidence of adverse health outcomes
- Individual risk factors
 - Cross sectional survey of HD handlers
 - Advantage: ease of data collection
 - Disadvantage: self-reported data
 - Registry for HD handlers
 - Advantages: prospective/ longitudinal data collection linking of work with health outcomes
 - Disadvantages: \$\$\$, subject mortality

Overcoming Barriers to HD Precaution Use

- Descriptive:
 - Replicate manager study (large sample)
 - Identify additional barriers
- Experimental:
 - Effects of selected interventions on HD precaution use
 - Effects of selected interventions on HD exposure
 - Impact of practice environment changes

References

American Society of Health System Pharmacists (2006). ASHP guidelines on handling hazardous drugs. *American Journal of Health System Pharmacists*, 63, 1172-1193.

Fransman, W., Roeleveld, N., Peelen, S., de Kort, W., Kromhout, H., & Heederik, D. (2007). Nurses with dermal exposure to antineoplastic drugs: Reproductive outcomes. [Research]. Epidemiology, 18, 112-119. doi: 10.1097/01.ede.0000246827.44093.c1

Friese, C.R., Himes-Ferris, L., Frasier, M.N., McCullagh, M.C., & Griggs, J.J. 2010. Structures and processes of care in ambulatory oncology settings and nurse-reported exposure to chemotherapy. *BMJ Quality and Safety*, August 16, epub ahead of print.

Gordis, L. (2004). Epidemiology (3rd ed.). Philadelphia, PA: Elsevier Saunders.

Hansen, J., & Olsen, J. H. (1994). Cancer morbidity among Danish female pharmacy technicians. [Study]. Scandinavian Journal of Work and Environmental Health, 20, 22-26. doi: 8016595

International Agency for Research on Cancer. (2012). Agents Classified by the IARC. IARC Monographs, 1-104(March 2012). Retrieved from http://monographs.iarc.fr/ENG/Classification/ClassificationsGroupOrder.pdf

Lawson, C.C., Rocheleau, C.M., Whelan, E.A., Hilbert, E.N.L., Grajewski, B., Spiegelman, D. and Rich-Edwards, J.W. (2012). Occupational exposures among nurses and risk of spontaneous abortion. American Journal of Obstetrics and Gynecology, 206: E-pub ahead of print. doi.org/10.1016/j.ajog.2011.12.030

Martin, S. (2005). Chemotherapy handling and effects among nurses and their offspring. [Abstract]. Oncology Nursing Forum, 32, 425.

References (2)

- McDiarmid, M. A., Oliver, M. S., Roth, T. S., Rogers, B., & Escalante, C. (2010). Chromosome 5 and 7 abnormalities in oncology personnel handling anticancer drugs. *Journal of Occupational and* Environmental Medicine, 52(10), 1028-1034.
- National Institute for Occupational Safety and Health (2004). Preventing occupational exposure to antineoplastic and other hazardous drugs in health care settings. From
- Occupational Safety and Health Administration (1999). OSHA technical manual, TED 1-0.15A Sec VI, Chapter II Categorization of drugs as hazardous Available from http://www.osha.gov/dts/osta/otm/otm_vi/otm_vi_2.html#2
- Pender, N. J., Murdaugh, C., & Parsons, M. A. (Eds.). (2006). Health promotion in nursing practice (5th ed.).
 Upper Saddle River, NJ Prentice Hall, Inc.
- Polovich, M., (ed). (2011). Safe Handling of Hazardous Drugs, 2nd ed. Pittsburgh, PA: Oncology Nursing
- Polovich, M., & Clark, P. C. (2012). Factors influencing oncology nurses' use of hazardous drug safe handling
- precautions. Oncology Nursing Forum, 39(3), E1-11.

 Polovich, M., & Martin, S. (2011). Nurses' Use of Hazardous Drug-Handling Precautions and Awareness of National Safety Guidelines. Oncology Nursing Forum, 38(6), 718-726. doi: 10.1188/11.ONF.718-726
- Polovich, M., Whitford, J. M., & Olsen, M. (Eds.). (2009). Chemotherapy and Biotherapy Guidelines and Recommendations for Practice (3rd ed.). Pittsburgh, PA: Oncology Nursing Society.
- Skov, T., Maarup, B., Olsen, J., Rorth, M., Winthereik, H., & Lynge, E. (1992). Leukaemia and reproductive outcome among nurses handling antineoplastic drugs. British Journal of Industrial Medicine, 49, 855-861. doi: 10.1136/0em.49.12.855

References (3)

- U.S. Department of Labor. (1998) Industrial Hygiene. From
- Valanis, B., Vollmer, W. M., Labuhn, K., & Glass, A. (1997). Occupational exposure to antineoplastic agents and self-reported infertility among nurses and pharmacists. Journal of Occupational and Environmental Medicine, 39, 574-580. doi: 10.1097/00043764-199706000-00013